In Mathematics
for Taking Another Look at the Universe, I presented this chart:
Then, right at the end, I wrote: “I do acknowledge that the ‘Apparent’ values of H in the recent past/near vicinity are very high. This is worthy of further investigation.”
The notion here is that, for closer events (in time and also
space), the equation H=Δx'/Δt/x gives higher values of H.
For clarity, Δx' is the difference in
proper distance over the period Δt for a location at an effective
distance from an observer given by x=ct (where t is how long ago
a photon would have had to have been emitted to be observed at the equivalent
of t=0 [ie now]).
Note that this equation blends two variants of distance, so its use would be problematic. Using the equation H=Δx/Δt/x results in the invariant H=70.855km/s/Mpc for all values of x=ct (the flat blue line).
I downloaded the NASA/IPAC Extragalactic Database list of galaxies to get an
idea of what values of H were recorded to galaxies at various distances
(and also redshift values).
Unfortunately, it appears that the value of H recorded appears to depend more on the paper from which it is extracted rather than the distance of the relevant galaxy. H values range from as low as 42 to as high as 103, per the table below.
H |
Year |
Method |
Ref Code |
Galaxies (N) |
103 |
1984 1985 1986 |
Tully-Fisher |
1984A&AS...56..381B 1985A&AS...59...43B 1986A&A...156..157B |
2073 887 398 |
100 |
1981 1992 2013 |
Tully-Fisher |
1981ApJ...248..408D 1992ApJ...395..347B 2013ApJ...771...88L |
303 35 568 |
100 |
1992 |
D-Sigma |
1992ApJ...384...43G |
35 |
100 |
1998 |
Magnitude |
1998A&A...337...31R |
72 |
100 |
2009 2010 |
GRB |
2009EPJC...63..139W 2010JCAP...08..020W |
32 19 |
95 |
1980 |
Tully-Fisher |
1980ApJ...239...12A |
40 |
95 |
1984 |
Faber-Jackson Tertiary |
1984ApJS...56...91D |
1104 278 |
92 |
1993 |
Tully-Fisher |
1993AJ....105...97S |
16 |
91 |
1984 |
Tully-Fisher |
1984ApJ...278..475B |
20 |
90 |
1985 |
Tully-Fisher |
1985A&A...153..125G |
257 |
88 |
1989 |
Faber-Jackson FP |
1989ApJ...344L..57P |
20 20 |
85 |
1995 |
Tully-Fisher |
1995A&A...294L...9W |
1 |
85 |
1992 |
Tully-Fisher |
1992ApJS...81..413M |
2711 |
85 |
1988 |
Tully-Fisher |
1988ApJ...330..579P |
40 |
85 |
1984 |
Sosies |
1984ApJ...282..382P |
17 |
84 |
1986 |
Tully-Fisher |
1986AJ.....91.1286S |
22 |
82 |
1997 1987 |
Tully-Fisher SNIa |
1997ApJS..108..417Y 1987PASP...99..592P |
207 1 |
80 |
1983 |
Tully-Fisher |
1983ApJ...265....1A |
44 |
77 |
2000 1994 |
Tully-Fisher |
1994AJ....107.1962B 2000ApJ...533..744T |
2 21 |
75 |
2016 2014 2013 2012 2012 2008 2006 2005 2002 2001 1994 1990 1986 |
Tully-Fisher |
2016AJ....152...50T 2014MNRAS.444..527S 2013ApJ...765...94S 2012ApJ...749...78T 2012ApJ...749..174C 2008Ap.....51..336K 2006Ap.....49..450K 2005Ap&SS.298..577R 2002ApJ...565..681R 2001PhDT.......242M 1994A&A...283...21S 1990ApJ...351L...5W 1986A&A...164...17G |
2306 3470 22 18 98 406 2724 2 1 23 64 2 2 |
75 |
1997 |
Tully-Fisher IRAS D-Sigma |
1997ApJS..109..333W |
8839 2946 1086 |
75 |
1988 |
Tully-Fisher Tully est |
1988NBGC.C....0000T |
942 1434 |
75 |
1997 |
FP |
1997MNRAS.291..488H |
22 |
75 |
1995 |
GRB |
1995ApJ...453..583W |
8 |
75 |
1991 1982 |
SNIa |
1991AJ....102..208H 1982ApJ...254....1A |
1 2 |
75 |
1982 |
CMD |
1982AJ.....87..462G |
2 |
75 |
1982 |
SZ effect |
1982ApJ...257..473B |
2 |
75 |
2010 |
GC radius |
2010ApJ...715.1419M |
1 |
74.4 |
2014 |
Tully-Fisher |
2014ApJ...792..129N |
110 |
74.4 |
2013 |
Tully-Fisher FP SBF Statistical TRGB SNIa Cepheids |
2013AJ....146...86T |
5851 1366 274 249 243 216 3 |
74.3 |
2015 |
L(Hβ)-δ |
2015MNRAS.451.3001T |
25 |
74.3 |
1983 |
Tully-Fisher |
1983ApJ...275..430V |
54 |
74.2 |
2011 2010 |
SNIa |
2011A&A...526A..81B 2010ApJ...716..712A |
26 687 |
74 |
2017 |
GRB |
2017A&A...598A.112D |
158 |
74 |
2012 2003 |
SNIa |
2012ApJ...744...38F 2003AJ....125..166K |
1 2 |
74 |
1996 |
Tully-Fisher |
1996ApJ...463...60B |
3 |
73.8 |
2017 2014 |
SNIa |
2017JCAP...03..056C 2014ApJ...795...44R |
19 335 |
73 |
2016 2011 |
SNII optical |
2016AcA....66..219H 2011MNRAS.417.1417F |
1 2 |
73 |
2015 |
Maser |
2015ApJ...800...26K |
1 |
73 |
2013 2012 |
SNIa |
2013ApJ...777...40M 2012A&A...546A..12V |
1 3 |
73 |
2011 |
Tully-Fisher |
2011A&A...532A.104N |
688 |
73 |
2010 |
GRB |
2010JCAP...08..020W 2006astro.ph..9262M |
12 24 |
73 |
2009 |
Cepheids |
2009RoAJ...19...35A |
93 |
72 |
2017 |
G Lens |
2017ApJ...835L..25M |
1 |
72 |
2015 |
FP |
2015MNRAS.451.2723S |
8 |
72 |
2015 2014 2013 2012 2011 2011 2010 2010 2010 2009 2009 2009 2009 2008 2008 2008 2007 2007 2006 2006 2006 2004 |
SNIa |
2015ApJ...798...39M 2014ApJ...784..105W 2013ApJ...773...53F 2012ApJ...754...19M 2011ApJ...731..120M 2011AJ....141...19B 2010ApJ...721.1608B 2010AJ....140.2036S 2010AJ....139..120F 2009ApJ...704.1036F 2009ApJ...704..629M 2009ApJ...697..380W 2009A&A...505..265L 2008MNRAS.384..107E 2008ApJ...689..377W 2008AJ....136.1482S 2007AJ....133...58K 2007A&A...469..645S 2006ApJ...647..501P 2006ApJ...645..488W 2006AJ....131.1639K 2004ApJ...602..571B |
1 108 79 20 110 33 17 15 28 56 39 3 1 1 44 3 1 1 90 98 3 58 |
72 |
2014 |
Tully-Fisher |
2014Ap.....57..457K |
145 |
72 |
2011 |
GeV TeV ratio |
2011arXiv1111.0913P 2010MNRAS.405L..76P |
18 17 |
72 |
2011 2010 2008 |
GRB |
2011ApJ...736....7C 2010JCAP...08..020W 2008JCAP...07..004M |
1 8 69 |
72 |
2002 |
D-Sigma |
2002AJ....123.2159B |
46 |
71.6 |
2014 2013 |
SNIa |
2014ApJ...786....9P 2013ApJ...768..166J |
10 1 |
71 |
2014 |
BL Lac
Luminosity |
2014A&A...565A..12P |
3 |
71 |
2013 2011 2011 |
GRB |
2013MNRAS.431.3550G 2011MNRAS.413.2173G 2011A&A...526A.153K |
1 2 5 |
71 |
2010 |
SGRB |
2010ApJ...709..664R |
12 |
71 |
2005 |
HII LF |
2005MNRAS.356.1117S |
15 |
71 |
2001 1982 |
Tully-Fisher |
2001ApJ...553...47F 1982PASAu...4..419V |
36 11 |
70.8 |
2015 2008 |
SNIa |
2015ApJS..219...13W 2008MNRAS.389.1577T |
31 107 |
70 |
2018 |
SNIa SNIa SDSS |
2018PASP..130f4002S |
2795 3027 |
70 |
2018 2017 2016 2016 2015 2014 2014 2014 2013 2013 |
SNIa |
2018ApJ...859..101S 2017MNRAS.464.4476C 2016JBAA..126..364F 2016ApJ...821..115W 2015ApJ...811...70R 2014MNRAS.438.1391P 2014AJ....148....1Z 2014A&A...568A..22B 2013MNRAS.434.1443X 2013MNRAS.433.2240G 2013ApJ...763...88C 2013ApJ...763...35R 2012MNRAS.426.2359M 2012ApJ...748..127F 2012ApJ...746...85S 2011ApJS..192....1C 2011ApJ...740...92G 2011ApJ...738..162S 2008ApJ...686..749K 2006A&A...447...31A 2000ApJ...539..658K 1992ApJ...400..127R 1987ApJ...315L.129F |
847 4 1 345 4 60 1 740 48 583 1504 1 28 75 15 472 206 860 398 117 5 1 1 |
70 |
2017 2017 |
SNII optical |
2017MNRAS.472.4233D 2017ApJ...835..166D |
61 133 |
70 |
2017 2015 2015 2015 2014 2014 2013 2013 2013 2013 2012 2011 2009 2006 |
BL Lac
Luminosity |
2017ApJ...834...41K 2015arXiv150203012A 2015ApJ...799....7A 2015AJ....150..181L 2014ApJ...784..151S 2014A&A...570A.126L 2013ApJ...768L..31F 2013ApJ...766...35F 2013ApJ...764..135S 2013ApJ...764...57D 2012A&A...547A...1N 2011A&A...529A..49H 2009MNRAS.397L..55B 2006AJ....132....1S |
5 2 1 1 11 2 1 1 1 1 1 1 1 4 |
70 |
2016 2015 2015 2015 2015 2014 2014 |
GeV TeV ratio |
2016MNRAS.459.3271A 2015MNRAS.449.1018Y 2015MNRAS.447.2810Y 2015MNRAS.446..217A 2015ApJ...802...65A 2014PASJ...66...12Z 2014A&A...567A.135A |
1 1 1 1 1 2 1 |
70 |
2016 2013 2013 2013 2010 2007 2004 |
GRB |
2016MNRAS.458.3821U 2013A&A...551A.133P 2013ApJ...763..125M 2013A&A...552L...5P 2010JCAP...08..020W 2007ApJ...660...16S 2004AIPC..727...37A |
19 1 1 2 2 69 42 |
70 |
2016 2014 2001 |
FP |
2016A&A...596A..14S 2014MNRAS.445.2677S 2001MNRAS.321..277C |
119078 8884 396 |
70 |
2015 2013 2012 |
SGBR |
2015ApJ...808..190R 2013ApJ...766...41S 2012A&A...545A..77R |
1 1 20 |
70 |
2014 |
G Lens Magnitude |
2014ApJ...797...98L |
20 22 |
70 |
2014 |
GeV TeV ratio BL Lac
Luminosity |
2014A&A...572A.121A |
1 1 |
70 |
2012 |
G Lens |
2012MNRAS.426..868S |
1 |
70 |
2011 1999 1992 |
Tully-Fisher |
2011A&A...531A..87I 1999AJ....118.1489D 1992ApJ...396..453H |
42 111 33 |
70 |
1997 |
SZ effect |
1997ApJ...481...35H |
5 |
70 |
1988 |
D-Sigma |
1988MNRAS.235.1177L |
18 |
69.7 |
2010 2009 |
GRB |
2010JCAP...08..020W 2009MNRAS.400..775C |
18 152 |
69 |
1997 |
Tully-Fisher |
1997MNRAS.290L..77S |
3 |
69 |
1991 |
D-Sigma |
1991BAAS...23..956G |
5 |
68 |
1996 |
SNIa |
1996ApJ...465L..83R |
7 |
67 |
1996 |
SNIa |
1996ApJ...457..500H |
26 |
66 |
1994 |
SNIa |
1994A&A...281...51M |
13 |
65.2 |
1997 |
Tully-Fisher |
1997A&A...326..915T |
21 |
65 |
2010 2010 2009 2009 2007 2007 2007 2006 2006 2005 2004 2003 2003 2002 2001 2001 2001 2000 1998 1998 1998 1998 1996 1996 1996 1995 |
SNIa |
2010arXiv1006.2112L 2010ApJ...708.1748F 2009ApJS..185...32K 2009ApJ...700.1097H 2007ApJ...666..694W 2007ApJ...659..122J 2007ApJ...659...98R 2006MNRAS.366..682S 2006ApJ...642....1C 2005AJ....130.2453K 2004ApJ...607..665R 2003ApJ...594....1T 2003ApJ...589..693B 2002ApJ...577L...1B 2001ApJ...560...49R 2001AJ....122.1616K 2001AJ....121.3127V 2000A&A...361...63T 1998ApJ...507...46S 1998ApJ...504..935R 1998ApJ...493L..53G 1998AJ....116.1009R 1996ApJ...473..588R 1996ApJ...473...88R 1996AJ....112.2398H 1995ApJ...445L..91R |
249 2 576 1486 414 131 41 1 9 21 186 35 6 1 1 8 1 1 2 10 8 80 20 23 8 13 |
65 |
1999 |
GRB |
1999ApJ...511L..79S |
52 |
65 |
1980 |
Tully-Fisher Statistical |
1980ApJ...238..458M |
23 1 |
62.3 |
2008 |
SNIa |
2008A&ARv..15..289T |
20 |
60 |
2000 |
SNIa BCG |
2000ApJ...540..634P |
239 288 |
58 |
1997 |
Grav Stab Gas
Disk |
1997ApJ...485..439B |
2 |
56 |
1992 |
SBF SNIa |
1992ARA&A..30..359B |
1 5 |
55 |
1984 |
Faber-Jackson |
1984ApJS...56...91D |
383 |
54 |
1997 |
Tully-Fisher |
1997A&A...326..915T |
21 |
53.9 |
1984 |
Tully-Fisher |
1984A&A...132..253R |
19 |
50 |
1996 |
FP SNII optical |
1996MNRAS.280..167J |
52 26 |
50 |
1994 |
SNII optical |
1994ApJ...433...19S |
2 |
50 |
1989 |
D-Sigma |
1989ApJS...69..763F |
798 |
50 |
1983 |
Tully-Fisher |
1983A&A...125..187R |
1 |
44 |
2007 |
AGN time lag |
2007MNRAS.380..669C |
14 |
42 |
1999 |
AGN time lag |
1999MNRAS.302L..24C |
1 |
Of all the papers
listed (the Ref Code refers to papers), there are two that have more than one
value of H for the galaxies surveyed.
1984ApJS...56...91D
refers to A comparison of distance scales for
early-type galaxies by de Vaucouleurs and Olson. Looking through the paper, it does not appear
that the Hubble parameter value was calculated.
Looking through the table above, two values are presented, H=95
and H=55 (km/s/Mpc). Looking at
the spreadsheet (NASA/IPAC Extragalactic Database (NED) list
of galaxies) it can be seen that 284 entries have H=55 marked
against them and 1382 entries have H=95.
However, there are not 1666 unique galaxies, only 425. For every instance of H=55, there is at
least one entry with H=95 recorded.
It’s extremely strange.
For example, for NGC
3619, there are two entries, one with H=55 and one with H=95. However, the entry with H=55 has a
distance of 44.7 Mpc and the entry with H=95 has a distance of 23.3 Mpc. Similarly with NGC 3203 (D=20.3 and
37.8), NGC 3193 (various values of D from 14.7 through to 25.6 for H=95
and D=38.5 for H=55) and so on.
Given the age of
the survey, 40 years ago now, and these peculiarities I’d suggest that we ignore
it.
2010JCAP...08..020W
refers to Observational constraints on cosmological
models with the updated long gamma-ray bursts by Wei. Again, the paper doesn’t specifically calculate
the value of the Hubble parameter. The NED
list has 109 entries against this paper, covering 97 distinct galaxies of which
only 46 have Hubble parameter values entered against them. There does not seem to be any relationship between
Hubble parameter and distance (despite Wei writing about “the discovery of
current accelerated expansion of our universe”).
The H values attributed
to this paper vary between 100 and 69.7 km/s/Mpc. At the upper range there are GRB 071020 (D=12,700
Mpc) and GRB 050904 (D=15,300 Mpc), with H=100 and H=69.7
respectively and towards the lower range there are GRB 010921 (D=1,620
Mpc) and XRF 040912 (D=1,760 Mpc), with H=73 and H=100
respectively.
So, while this
paper is newer, at 14 years ago, it doesn’t seem to be aiming at establishing
Hubble parameter values (but rather establishing the validity of the Gamma Ray
Burst method, and filling in a gap in the data, referred to as a ‘desert’), and
probably could be safely ignored.
That leaves all
the other papers for which there is one value for the Hubble parameter, and one
value only.
Interestingly,
if we consider only the papers over certain period, the values for the Hubble
constant calculated in the “wisdom of the crowd sort of way” (average of all values)
are: past 40 years (1985-2024) – H=71.3, past 30 years (1995-2024) – H=70.87,
past 20 years (2005-2024) – H=70.57 and past 10 years (2015-2024) – H=70.1. I wouldn’t get too excited about the value zeroing
in 70 since the spreadsheet generally seems to have a low level of specificity. I think that 100 just means the value is considered
to be somewhere between 50 and 150 (or even higher). Similarly, 70 probably means something between
65 and 75. There are more accurate values
provided, for example 70.8, recorded against 2015ApJS..219...13W – First
Results from the La Silla-QUEST Supernova Survey – and 2008MNRAS.389.1577T
– Light-curve studies of nearby Type Ia
supernovae with a Multiband Stretch method, but note that the authors in both instances set the
value of H0, they don’t calculate it. This raises the question of whether, in the
documents referred to the NED list, is H always an assumed value? If so, then the list is of no use for what I
am trying to establish.
No comments:
Post a Comment
Feel free to comment, but play nicely!
Sadly, the unremitting attention of a spambot means you may have to verify your humanity.